A New Route to Strained Cyclic Disilanylene–acetylenes (1,2,5,6-Tetrasilacyclo-octa-3,7-diyne)

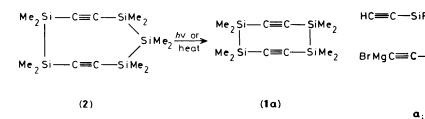
Takahisa Iwahara*† and Robert West

Department of Chemistry, University of Wisconsin, Madison, WI 53706, U.S.A.

Treatment of 1,2-dichlorodisilanes with di-Grignard reagents of 1,2-diethynyldisilanes leads to high yields of the eight-membered ring compounds (**1a**—c) which have u.v. absorptions near 250 nm indicative of σ - π conjugation.

Conjugation between Si–Si σ bonds and π systems has now been well established for many polysilyl compounds containing unsaturated or aromatic groups.¹ Especially strong effects

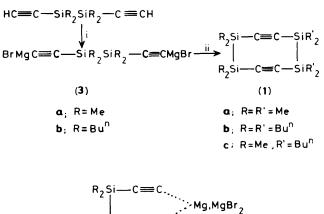
were found in the strained cyclic disilanyleneacetylene (1a), obtained by Sakurai and co-workers from the thermal or photochemical ring contraction of the nine-membered ring compound (2).²


In the course of syntheses of disilanylene–ethynylene polymers, 1,2-dichlorodisilanes were treated with dilute (~ 0.1 M) solutions of the magnesium derivatives of diacetylenes (**3a**,

[†] Permanent address: Central Research Laboratories, Kanegafuchi Chemical Industry Co., Ltd., 2–80, 1-chome, Yoshida-cho, Hyogoku, Kobe 652, Japan.

Table 1. Properties of cyclic disilanylene-diacetylenes.

Compound	% Yield	N.m.r.			
		1Нь	13C	²⁹ Si	τ/nm ^c
(1a)	67	0.25 (s, 24H)	-3.07 ^{b,d} 119.46	-33.62 ^{b,d}	213 240 (sh) 249
(1b)	73	0.59—0.81 (br.t, 8H) 0.81—1.00 (t, 12H) 1.17—1.50 (m, 16H)	13.04e 13.09 26.83 27.69 120.22	-27.04°	215 240 (sh) 250
(1c)	62	0.24 (s, 12H) 0.61—0.79 (br.t, 4H) 0.79—0.96 (t, 6H)	3.07 ^b 12.56 13.72	-27.43 ^b	215 250
		1.20—1.50 (m, 8H)	26.45 27.15 118.81 120.93	-33.07	


^a Satisfactory elemental analyses, (1b), or exact mass measurements, (1a), (1c), were obtained. ^b In CDCl₃. ^c In n-hexane. ^d Values in ref. 2. ^e In C_6D_6 .

b) in tetrahydrofuran (THF). To our surprise the eightmembered ring diacetylenes (1a-c) were produced in 60-75% yield.[‡]

These reactions make these strained-ring compounds easily accessible. Spectroscopic data are in Table 1. The properties of (1a) are identical to those of the substance reported earlier.² All the compounds show u.v. absorption bands near 250 nm which may be associated with σ - π conjugation. The diethynyldisilane precursors to (3a, b) have their longest wavelength absorptions at 217 nm.

Use of dilithium compounds instead of di-Grignard reagents led to ethynylene-disilarylene polymers. § Possible

Reagents and conditions: i, 2EtMgBr, THF, $-2C_2H_6$; ii, CISi-R'₂SiR'₂Cl.

(4)

ring closure to give (1a-c) may be facilitated by a cyclic structure for the dimagnesium derivative, *i.e.* (4). These results suggest that dimagnesium derivatives may be useful in the synthesis of other strained cyclosilane rings, a possibility which is now being explored.

Received, 15th March 1988; Com. 8/01055B

References

- 1 H. Sakurai, J. Organomet. Chem., 1980, 200, 261; M. Ishikawa, Pure Appl. Chem., 1978, 50, 11; M. Ishikawa and M. Kumada, Adv. Organomet. Chem., 1981, 19, 51.
- 2 H. Sakurai, Y. Nakadaira, A. Hosomi, Y. Eriyama, and C. Kabuto, J. Am. Chem. Soc., 1983, 105, 3359.

[‡] The synthesis of (**1b**) is typical. To the di-Grignard reagent (**3b**) prepared from HC=CSiBuⁿ₂SiBuⁿ₂C=CH (2.9 mmol) and ethylmagnesium bromide (6.0 mmol) in THF (23 ml), was added 2.7 mmol of ClSiBuⁿ₂SiBuⁿ₂Cl (2.7 mmol) in THF (3 ml). A mildly exothermic reaction occurred. The solution was refluxed for 4 h and the THF was pumped off. To the residue was added hexane (30 ml) and then aqueous NH₄Cl (10 ml). After the usual work-up, fractional kugelrohr distillation at a bath temperature of 205–210 °C and 0.45 Torr gave (**1b**) (1.23 g) as a viscous liquid. For (**1c**), kugelrohr distillation was at 144–150 °C. For (**1a**), sublimation at 70 °C and 0.15 Torr gave colourless crystals, m.p. 138–140 °C.

[§] The properties of the ethynylene-disilarlylene polymers will be described separately. Polymers were also obtained when the reactions between (3) and dichlorosilanes were carried out at higher concentrations ($\sim 1 \text{ M}$).